\(\int \frac {(d+e x)^{3/2}}{\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [787]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 39, antiderivative size = 109 \[ \int \frac {(d+e x)^{3/2}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {4 \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c^2 d^2 \sqrt {d+e x}}+\frac {2 \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c d} \]

[Out]

4/3*(-a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^2/d^2/(e*x+d)^(1/2)+2/3*(e*x+d)^(1/2)*(a*d*e+(a*e
^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {670, 662} \[ \int \frac {(d+e x)^{3/2}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {4 \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 c^2 d^2 \sqrt {d+e x}}+\frac {2 \sqrt {d+e x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 c d} \]

[In]

Int[(d + e*x)^(3/2)/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(4*(c*d^2 - a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*c^2*d^2*Sqrt[d + e*x]) + (2*Sqrt[d + e*x]*S
qrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*c*d)

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rule 670

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 1))), x] + Dist[Simplify[m + p]*((2*c*d - b*e)/(c*(m + 2*p + 1))), In
t[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && E
qQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && IGtQ[Simplify[m + p], 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c d}+\frac {\left (2 \left (d^2-\frac {a e^2}{c}\right )\right ) \int \frac {\sqrt {d+e x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{3 d} \\ & = \frac {4 \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c^2 d^2 \sqrt {d+e x}}+\frac {2 \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.50 \[ \int \frac {(d+e x)^{3/2}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \sqrt {(a e+c d x) (d+e x)} \left (-2 a e^2+c d (3 d+e x)\right )}{3 c^2 d^2 \sqrt {d+e x}} \]

[In]

Integrate[(d + e*x)^(3/2)/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(2*Sqrt[(a*e + c*d*x)*(d + e*x)]*(-2*a*e^2 + c*d*(3*d + e*x)))/(3*c^2*d^2*Sqrt[d + e*x])

Maple [A] (verified)

Time = 0.52 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.47

method result size
default \(-\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (-c d e x +2 e^{2} a -3 c \,d^{2}\right )}{3 \sqrt {e x +d}\, c^{2} d^{2}}\) \(51\)
gosper \(-\frac {2 \left (c d x +a e \right ) \left (-c d e x +2 e^{2} a -3 c \,d^{2}\right ) \sqrt {e x +d}}{3 c^{2} d^{2} \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}\) \(69\)

[In]

int((e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/(e*x+d)^(1/2)*((c*d*x+a*e)*(e*x+d))^(1/2)*(-c*d*e*x+2*a*e^2-3*c*d^2)/c^2/d^2

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.67 \[ \int \frac {(d+e x)^{3/2}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d e x + 3 \, c d^{2} - 2 \, a e^{2}\right )} \sqrt {e x + d}}{3 \, {\left (c^{2} d^{2} e x + c^{2} d^{3}\right )}} \]

[In]

integrate((e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

2/3*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*e*x + 3*c*d^2 - 2*a*e^2)*sqrt(e*x + d)/(c^2*d^2*e*x + c^2
*d^3)

Sympy [F]

\[ \int \frac {(d+e x)^{3/2}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {\left (d + e x\right )^{\frac {3}{2}}}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}\, dx \]

[In]

integrate((e*x+d)**(3/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral((d + e*x)**(3/2)/sqrt((d + e*x)*(a*e + c*d*x)), x)

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.60 \[ \int \frac {(d+e x)^{3/2}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \, {\left (c^{2} d^{2} e x^{2} + 3 \, a c d^{2} e - 2 \, a^{2} e^{3} + {\left (3 \, c^{2} d^{3} - a c d e^{2}\right )} x\right )}}{3 \, \sqrt {c d x + a e} c^{2} d^{2}} \]

[In]

integrate((e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

2/3*(c^2*d^2*e*x^2 + 3*a*c*d^2*e - 2*a^2*e^3 + (3*c^2*d^3 - a*c*d*e^2)*x)/(sqrt(c*d*x + a*e)*c^2*d^2)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.30 \[ \int \frac {(d+e x)^{3/2}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \, e {\left (\frac {3 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} {\left (c d^{2} - a e^{2}\right )}}{c^{2} d^{2} e} - \frac {2 \, {\left (\sqrt {-c d^{2} e + a e^{3}} c d^{2} - \sqrt {-c d^{2} e + a e^{3}} a e^{2}\right )}}{c^{2} d^{2} e} + \frac {{\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}}}{c^{2} d^{2} e^{2}}\right )}}{3 \, {\left | e \right |}} \]

[In]

integrate((e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

2/3*e*(3*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*(c*d^2 - a*e^2)/(c^2*d^2*e) - 2*(sqrt(-c*d^2*e + a*e^3)*c*d^2
 - sqrt(-c*d^2*e + a*e^3)*a*e^2)/(c^2*d^2*e) + ((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)/(c^2*d^2*e^2))/abs(e)

Mupad [B] (verification not implemented)

Time = 11.91 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.78 \[ \int \frac {(d+e x)^{3/2}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {\left (\frac {2\,x\,\sqrt {d+e\,x}}{3\,c\,d}-\frac {\left (4\,a\,e^2-6\,c\,d^2\right )\,\sqrt {d+e\,x}}{3\,c^2\,d^2\,e}\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{x+\frac {d}{e}} \]

[In]

int((d + e*x)^(3/2)/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2),x)

[Out]

(((2*x*(d + e*x)^(1/2))/(3*c*d) - ((4*a*e^2 - 6*c*d^2)*(d + e*x)^(1/2))/(3*c^2*d^2*e))*(x*(a*e^2 + c*d^2) + a*
d*e + c*d*e*x^2)^(1/2))/(x + d/e)